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Abstract
To determine the Burnett transport coefficients of non-ideal multi-element
charged matter the representations of conservation equations of matter as
generalized Langevin equations are used. Mori’s algorithm is revised to
derive the equation of motion of a dynamical value operator of a system in the
form of the generalized nonlinear Langevin equation. After transformation,
using necessary variational derivatives, these equations are compared with the
Burnett hydrodynamical conservation equations. In consequence, the response
function expressions of transport coefficients corresponding to second-order
derivatives of thermal disturbances are found in the long-wavelength and low-
frequency limits. To establish a link between the results of the executed
investigations and hydrodynamical problems the properties of the high
derivative coefficients matrix of the set of conservation equations in the
linearized Burnett approximation are discussed.

PACS numbers: 52.25.Fi, 05.70.Ln

1. Introduction

The transport processes in the Burnett approximation define, for example, the following
hydrodynamical phenomena: thermal-stress convection, sound propagation, the structure of
weak shock waves and so on. The investigation of the problem of propagation of super-
sonic waves in a gas shows the strong dependence of the corresponding dispersion relations
on taking into account Burnett transport processes. The asymmetrical parameters of the
density and temperature profiles of a weak shock wave also depend on these processes.
The well-known approximations for investigations of the corresponding transport coefficients
of weak coupled matter are based on the Boltzmann kinetic equation, which is solved by
the second-order Chapman–Enskog method [1, 2]. At the same time the definition of the
Burnett transport coefficients of the dense matter is a difficult problem of the response theory.
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The traditional linear transport relations are in the main studied within the framework of the
response theory to the thermal disturbances (see, for example, [3]). Transport equations for a
non-Newtonian fluid with a complex rheology were derived by the method of nonequilibrium
statistical operator. The procedure permitted the study, in principle, of the transport relations
for complex liquids [4, 5]. Nevertheless the attempts to construct a nonlinear response theory
to thermal disturbances did not lead to the appearance of the method of determination of the
nonlinear disturbance transport coefficients and also of the coefficients in the corresponding
linearized current relations. Therefore, in the paper for the definition of these coefficients the
procedure of the comparison of the conservation equations of a continuous charged medium
and the microscopic equations for dynamical variables is applied. In this case information
about phenomenological forms of the conservation equations, mass, heat and other currents
is used. This information, in the known sense, sets the microscopic expressions for transport
coefficients in the conservation equations.

The representations of conservation equations of matter as generalized Langevin equations
are used for the determination of the Burnett transport coefficients of non-ideal multi-element
charged matter. The equation of motion of a dynamical value operator of a system in the form
of the generalized nonlinear Langevin equation is derived by Mori’s algorithm in section 2. In
the next section these equations are compared with the Burnett hydrodynamical conservation
equations after transformation, using necessary variational derivatives. The response function
expressions of transport coefficients which correspond to the second-order derivatives of
thermal disturbances are found in section 4 in the long-wavelength and low-frequency limits.
The properties of the high derivative coefficient matrix of the set of conservation equations
in the linearized Burnett approximation are discussed to establish a link between the results
of the executed investigations and hydrodynamical problems.

2. Thermal disturbances. Nonlinear generalized Langevin equations

In the majority of problems of the quantum response theory to thermal disturbances it is
impossible to use the perturbation theory and the known Kubo’s method, in particular, because
the corresponding corrections to the Hamiltonian of the system (H ) due to these disturbances
cannot be formulated in the general form. Therefore, in this case the more appropriate approach
is Mori’s algorithm according to which the equation of motion of the operator for a dynamical
value can be presented in a form of generalized Langevin equations. For the linear case this
equation was derived in [6]. The given method was used in [7] to get the same equation in the
nonlinear case for the mechanical disturbances situation. The analogous derivation is briefly
discussed here to describe the response to thermal disturbances. Let us define a scalar product
of operators in the Heisenberg representation, where ρ(t) is the density matrix of the system,

〈A(t); B(t0)〉 = Tr ρ(t0)

∫ β

0
dλ eλHA(t) e−λH B(t0). (1)

The projection operator is

PG(t) = 〈G(t); B(t0)〉
〈B(t0); B(t0)〉 · B(t0)

B(t) =
∑

(t; t0) ·B(t0) + B ′(t0)
∑

(t; t0) = 〈B(t); B(t0)〉/〈B(t0); B(t0)〉
B ′(t) = (1 − P)B(t)

B(t0) = iωB(t0) + K(t0) iω =
[

d

dt
�(t; t0)

]
t=t0

K(t0) = (1 − P)Ḃ(t0).

(2)
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We obtain the equation of motion for B ′(t)
d

dt
B ′(t) = (1 − P)i[H,B ′(t)] + �(t; t0)K(t0)

which has the solution of the form

B ′(t) =
∫ t

t0

dt ′�(t ′; t0)f (t − t ′; t0) f (t) = exp[t (1 − P)iL]K(t0).

After transformation similar to that performed above we get the equation for �(t; t0),

d

dt
�(t; t0) = iω�(t; t0) + 〈K(t); B(t0)〉/〈B(t0); B(t0)〉

where K(t) is the Heisenberg operator; using B(t) decomposition and solution for B ′(t),
〈K(t); B(t0)〉 becomes

〈K(t); B(t0)〉 = Tr ρ(t)

∫ β

0
dλ eλHB(t0 − t) e−λH K(t0)

= Tr ρ(t)

∫ β

0
dλ eλHB(t0) e−λHK(t0) · �(t0 − t; t)

−
∫ t

t0

dt ′�(t ′; t0) Tr ρ(t)

∫ β

0
dλ e−λH f (t − t ′; t0) eλHK(t0).

Hence, the equation for �(t; t0) is the following:

d

dt
�(t; t0) = iω�(t; t0) −

∫ t

t0

dt ′ϕ(t ′, t0)�(t − t ′; t0) + r(t, t0)

ϕ(t; t0) = Tr ρ(t)

∫ β

0
dλ eλHf (t; t0) e−λH f (t0; t0)/〈B(t0); B(t0)〉

r(t; t0) = Tr ρ(t)

∫ β

0
dλ eλHB(t0) e−λHK(t0) · �(t0 − t; t0)/〈B(t0); B(t0)〉

where r(t; t0) = 0 in the linear approximation. Thus, the generalized Langevin equation for
B(t) has the nonlinear form

d

dt
B(t) − iωB(t) +

∫ t

t0

dt ′ϕ(t − t ′; t0)B(t ′) = f (t; t0) + r(t; t0)B(t0) (3)

where

Tr ρ(t)

∫ β

0
dλ eλHf (t; t0) e−λH B(t0) = 0. (3′)

The nonlinearity of the generalized Langevin equation (3) follows from the dependences
of the density matrix of the system and consequently ‘frequency’, ‘transport coefficient’ and
‘random force’ in this equation on operators of dynamical variables {B(t)} [5]. Nonequilibrium
density matrix ρ(t) can be determined, for example, by Zubarev’s method [4, 5].

3. Decomposition of the nonlinear generalized Langevin equations. Burnett
phenomenological kinetic coefficients

To rewrite the generalized Langevin equation in a form convenient for the definition of the
Burnett transport coefficient we use a decomposition of the equation [8]. Let us write the
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nonlinear generalized Langevin equation in the form

d

dt
B(t) = F [B(t)] + f (t; t0)

F [B(t)] = iωB(t) −
∫ t

t0

dt ′ϕ(t − t ′; t0)B(t ′) + r(t; t0)B(t0)

where F [B(t)] is the analytical functional and B(t) is a vector

F [B(t)] =
∞∑

n=1

1

n!

∫ t

0
dτ1 . . .

∫ τ

0
dτn�n(t − τ1, . . . , t − τn)B(τ1) . . . B(τn)

F [B(t)] ∼=
∫ τ

0
dτ�1(t − τ )B(τ) +

1

2

∫ t

0

∫ t

0
dτ1dτ2�2(t − τ1, t − τ2)B(τ1)B(τ2)

where �n is the n-order functional derivative. We take into account the coordinate dependences
of the operators, use the local approximation for the �2, multiply the equations by B(r),
average over a density matrix ρ(t) and then by Fourier–Laplace transformation receive the
matrix equation for correlation functions of two and three orders, which has, in general, the
following form

z〈B(k, z)B(−k, 0)〉 − 〈B(k)B(−k)〉 = �1〈B(k, z)B(−k, 0)〉 + �2M (4)

where 〈· · ·〉 means averaging over a nonequilibrium density matrix, z-complex variable,
B(r, t)-operators in the Heisenberg representation; �2, M are three-index objects which
correspond to Burnett phenomenological kinetic coefficients and three order correlation
functions; �1, 〈BB〉-matrices, which correspond to ordinary phenomenological kinetic
coefficients and correlation functions.

Following a scheme of approach we write a continuity equation, the equations for the
diffusion of chemical elements, a dynamical equation and energy conservation equation. We
reduce the system of differential conservation equations to a system of algebraic equations
by Fourier–Laplace transformation, multiply the equations by B(−k), average over a density
matrix ρ(t) and receive the matrix equation for correlation functions of two and three orders

z〈B(k, z)B(−k, 0)〉 − 〈B(k)B(−k)〉 = −k2M1R
−1
BX〈B(k, z)B(−k, 0)〉 − ik3M2R

−1
BXR−1

BXM

tB = [Q(k, z), {ρmca(k, z)}, ρm(k, z), vl(k, z), vt (k, z)]

Q(k, z) = u(k, z) − ρm(k, z)(u + p)/ρm (5)

tX = [T (k, z), {ρmca(k, z)}, ρm(k, z), vl(k, z), vt (k, z)]

B = RBXX.

To find the Burnett kinetic coefficient definitions over �2-elements, we can equate the
∼k3-members of equations (4) and (5). On the other hand the definitions of the Burnett kinetic
coefficients follow from the last equation, if we use the object, reverse of M. These procedures
are cumbersome. The relations get simplified by using some variants of the density matrix
ρ(t), in particular, an undisturbed density matrix ρ0. Besides that, it takes into account the
fact that the vector and tensor currents (Ji) in the conservation laws have different definitions,
which are governed by nonlinear irreversible thermodynamics [9, 10], by the Chapman–
Enskog method of the second order [1] and by some phenomenological rheology laws [11].
Let us write the corresponding definitions in the schematic form
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1. Ji = LikXk + LijkXjXk

2. Ji = Ji[∇T ∇ · u,∇(T ∇ · u),∇u · ∇T , (∇p + ∇T ) · e, d∇ · u,∇u · d,∇∇ · u, d · e]

Ji = Ji[e∇ · u, {∇∇p + ∇u · e + ∇u · ∇u}, {e · e}, {∇∇T }, {∇T ∇T }, . . .]
{Nαβ} = 1

2 (Nαβ + Nβα) − 1
3δαβNγγ

(Rheology relation types: generalized Newton, Bingham, Reiner–Rivlin, etc).

Here Xk are the usual thermodynamical forces; Lik , Likl are the phenomenological kinetic
coefficients; definition 2 corresponds to vector currents and tensor currents, respectively.
Obviously, the coincidence of definitions 1 and 2 is not perfect and second-order kinetic
coefficients depend on the form of current which is used. The coincidence takes place for the
linearized Burnett approximation.

4. Linearized Burnett approximation

Let us consider the linearized Burnett approximation. The corresponding set of conservation
equations can be reduced to a system of algebraic equation by Fourier–Laplace transformation.
In writing the algebraic system we use phenomenological kinetic coefficients (α, β) taking the
non-locality of spatial and time dependences of currents from thermodynamical forces into
account. The system has the following form (compare with [3])

zQ(k, z) − Q(k) = −k2[α11(k, z)T (k, z) + T α1b(k, z)Lb(k, z) + ikα1v(k, z)vl(k, z)]

zρmca(k, z) − ρmca(k) = −k2[αa1(k, z)T (k, z) + αab(k, z)Lb(k, z) + ikαav(k, z)vl(k, z)]

zρm(k, z) − ρm(k, z) = −k2ρm

ik

k2
vl(k, z)

zvl(k, z) − vl(k, z) = −k2 1

ikρm

[k2βv1(k, z)T (k, z) + k2βvb(k, z)Lb(k, z)

+ p(k, z) + ikb(k, z)vl(k, z)]

zvt (k, z) − vt (k) = −k2 1

ρm

η(k, z)vt (k, z)

where Lb(k, z) = T (µb/T )(k, z) + (4πe2/k2)cρ(k, z)δbρρm/(mbme); we shall write the set
of equations in matrix form because µb, p = µb, p(T , ρmca, ρm)

zB(k, z) − B(k) = −k2M1(k, z)X(k, z). (6)

Following a scheme of approach we multiply the equations by B(−k), average over a
density matrix ρ(t) and obtain the matrix equation for correlation functions of two orders

JBB(k, z) − �(k) =
[

1 +
k2

z
M1(k, z)R−1

BX

]−1

M1(k, z)R−1
BX〈B(k)B(−k)〉/(V kBT )

�(k) = (V kBT k2)−1

(
d

dt
〈B(k)B(−k)〉

)
.

After the calculation of the matrix inverse to the matrix in square brackets in the
long-wavelength limit and the multiplications we obtain for the linearized Burnett kinetic
coefficients of dense charged matter

α̃1ν(k, z) = ik[α1ν(k, z) + (ε−1 − 1)α1ραρν/αρρ] (7)

where α̃ab is an element of the JBB matrix. Note that the polarization effects, which correspond
to the second term on the right-hand side of (7), do not arise for the tensor kinetic coefficients
in this approximation.
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The properties of the high derivative coefficients matrix of the set of conservation equations
in the linearized Burnett approximation are necessary to establish a link between the results of
the executed investigations and hydrodynamical problems. For this purpose we consider the
entropy production of the multi-element condensed matter. The compatibility of principles of
irreversible thermodynamics with the linearized Burnett approximation was shown under the
condition that the collection of phenomenological relations for currents and thermodynamical
forces is extended. Consequently, the entropy production has the following form (see, for
example, [12])

σ = −(1/T )[(J′
q · ∇) ln T + π̂ ⊗ {∇u} + p

Na−1∑
a=1

(wa − we) · da + (1/T )ĴT ⊗ {∇∇}T

+ Ĵu ⊗ {∇∇u} + Jv·∇2u +
Na−1∑
a=1

(
ĴD

a − ĴD
e

) ⊗ {∇da}. (8)

This expression contains the ‘physical’ currents, the first three currents, which are used
in the set of hydrodynamical conservation equations, and the ‘non-physical’ currents. We can
write the currents according to the Curie principle

wa − we = −
Na−1∑
a=1

αabdb − αaq∇ ln T − αau∇2u

J′
q = −

Na−1∑
a=1

αqada − αqq∇ ln T − αqu∇2u

Jv = −
N−1∑
b=1

αubdb − αuq∇ ln T − αuu∇2u;

(9)

other tensor currents are written in the same manner. Rewrite the currents in the matrix form



wa − we

Jq

Jv

ĴD
a − ĴD

e

π̂

ĴT

Ĵu




=




αab αaq αau 0 0 0 0
αqa αqq αqu 0 0 0 0
αua αuq αuu 0 0 0 0
0 0 0 βab βau βaq 0
0 0 0 βua βuu βuq 0
0 0 0 βqa βqu βqq 0
0 0 0 0 0 0 βvv




·




∇ ln T

db

∇2u
{∇db}
{∇u}

{∇∇}T
{∇∇u}




. (10)

According to the Curie principle matrix (10) is decomposed; submatrices 3 × 3 and 4 × 4 are
symmetrical. But the submatrices properties do not define the properties of the high derivative
coefficient matrix of the set of conservation equations (for example, its parabolicity [3]) in the
linearized Burnett approximation, because part of the coefficients of the submatrices includes
the ‘physical’ and part the ‘non-physical’ currents. In other words the properties of the high
derivative coefficients matrix are governed by calculation algorithms with the aid of which
the corresponding linearized Burnett transport coefficients are defined. This circumstance
produces the difficulties in the corresponding hydrodynamical problems.

5. Conclusions

Mori’s algorithm is used to derive the equation of motion of an operator of a dynamical value
in the form of nonlinear generalized Langevin equations. This derivation is produced for
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the system under the thermal disturbances situation. A convenient form of the generalized
Langevin equation is defined by the decomposition method for the determination of Burnett
transport coefficients. The determinations of the local phenomenological Burnett coefficients,
which correspond to thermal disturbances of dense charged matter, are discussed. The
corresponding linearized Burnett approximations are described.
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